RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 75, Issue 5, Pages 663–669 (Mi mzm62)

Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain

A. Yu. Kolesova, A. N. Kulikova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study the problem of the attractors of the boundary-value problem
$$ u_t=\sqrt \varepsilon (D_0 + \sqrt \varepsilon D_1)\Delta u + (A_0 + \varepsilon A_1)u + F(u),\qquad u_x|_{x=0,x=l_1} = u_y|_{y=0,y=l_2}=0, $$
where $0\le\varepsilon\ll 1$, $u\in \mathbb{R}^N$, $N\ge 3$, $\Delta $ is the Laplace operator, and $-D_0$ is the Hurwitz matrix. For such a boundary-value problem, under certain assumptions, we establish the existence of any finite fixed number of stable cycles, provided that $\varepsilon>0$ is chosen appropriately small. In other words, it is shown that this boundary-value problem involves the buffer phenomenon.

UDC: 517.926

Received: 25.03.2002
Revised: 09.07.2003

DOI: 10.4213/mzm62


 English version:
Mathematical Notes, 2004, 75:5, 617–622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024