RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 86, Issue 5, Pages 659–663 (Mi mzm6354)

On the Saturation of Subfields of Invariants of Finite Groups

I. V. Arzhantseva, A. P. Petravchukb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b National Taras Shevchenko University of Kyiv

Abstract: Every subfield $\mathbb K(\phi)$ of the field of rational fractions $\mathbb K(x_1,\dots,x_n)$ is contained in a unique maximal subfield of the form $\mathbb K(\psi)$. The element $\psi$ is said to be generating for the element $\phi$. A subfield of $\mathbb K(x_1,\dots,x_n)$ is said to be saturated if, together with every its element, the subfield also contains the generating element. In the paper, the saturation property is studied for the subfields of invariants $\mathbb K(x_1,\dots,x_n)^G$ of a finite group $G$ of automorphisms of the field $\mathbb K(x_1\dots,x_n)$.

Keywords: finite group, saturated subfield, polynomial ring, polynomial invariant, subalgebra of invariants, closed rational function, the groups $\operatorname{SL}_2(\mathbb C)$, $\operatorname{PSL}_2(\mathbb C)$.

UDC: 512.623.22

Received: 24.07.2008

DOI: 10.4213/mzm6354


 English version:
Mathematical Notes, 2009, 86:5, 625–628

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024