RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 5, Pages 662–672 (Mi mzm6623)

This article is cited in 19 papers

Asymptotics of the Eigenvalues of the Sturm–Liouville Problem with Discrete Self-Similar Weight

A. A. Vladimirova, I. A. Sheipakb

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b M. V. Lomonosov Moscow State University

Abstract: We study the asymptotics of the spectrum of the boundary-value problem
$$ -y''-\lambda\rho y=0,\qquad y(0)=y(1)=0, $$
for the case in which the weight $\rho\in\mathring W_2^{-1}[0,1]$ is the generalized (in the sense of distributions) derivative of a self-similar function $P\in L_2[0,1]$ of zero spectral order.

Keywords: Sturm–Liouville problem, asymptotics of eigenvalues, self-similar function, spectral order of a function, Sturm–Liouville problem.

UDC: 517.984

Received: 11.12.2008

DOI: 10.4213/mzm6623


 English version:
Mathematical Notes, 2010, 88:5, 637–646

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024