Abstract:
In the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$, we construct best linear approximation methods for classes of analytic functions $W^rH_q\Phi$, $r\in\mathbb N$, in the unit disk (studied by L. V. Taikov) whose averaged second-order moduli of continuity of the angular boundary values of the $r$th derivatives are majorized by a given function $\Phi$ satisfying certain constraints.
Keywords:linear approximation of functions, analytic function, Hardy spaces $H_{q,\rho}$, modulus of continuity, $n$-width (Bernstein, Kolmogorov, Gelfand), algebraic polynomial, Minkowski's inequality.