RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 3, Issue 3, Pages 253–260 (Mi mzm6676)

This article is cited in 1 paper

Extension of dual subspaces invariant under an algebra

E. A. Larionov

Moscow Institute of Physics and Technology

Abstract: Phillips' known hypothesis concerning the extension of dual pairs of subspaces $\{\mathfrak L_1^0,\mathfrak L_2^0\}$, invariant under a commutative $J$-symmetric algebra $R$ in a Hilbert space $\mathfrak H$ , to a dual pair of maximal subspaces $\{\mathfrak L_1,\mathfrak L_2\}$, invariant under $R$ is established in the case where a dual pair of maximal subspaces exists $\{\mathfrak F_1,\mathfrak F_2\}$, invariant under $R$ with $\overline{\mathfrak F_1\oplus\mathfrak F_2}=\mathfrak H$, and the pair $\{\mathfrak L_1^0,\mathfrak L_2^1\}$ consists of $J$-neutral subspaces.

UDC: 513.88

Received: 27.05.1967


 English version:
Mathematical Notes, 1968, 3:3, 163–166

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025