RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 3, Issue 5, Pages 511–522 (Mi mzm6708)

This article is cited in 3 papers

On the number of simplexes of subdivisions of finite complexes

M. L. Gromov

Leningrad State University named after A. A. Zhdanov

Abstract: Combinatorial invariants of a finite simplicial complex $K$ are considered that are functions of the number $\alpha_i(K)$ of Simplexes of dimension $i$ of this complex. The main result is Theorem 2, which gives the necessary and sufficient condition for two complexes $K$ and $L$ to have subdivisions $K'$ and $L'$ such that $\alpha_i(K')=\alpha_i(L')$ for $0\le i<\infty$. The theorem yields a corollary: if the polyhedra $|K|$ and $|L|$ are homeomorphic, then there exist subdivisions $K'$ and $L'$ such that $\alpha_i(K')=\alpha_i(L')$ for $i\ge0$.

UDC: 513.83

Received: 11.09.1967


 English version:
Mathematical Notes, 1968, 3:5, 326–332

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025