RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 3, Issue 6, Pages 715–720 (Mi mzm6733)

This article is cited in 1 paper

The generating elements of certain Volterra operators connected with third- and fourth-order differential operators

A. P. Khromov

Saratov State University named after N. G. Chernyshevsky

Abstract: Sufficient conditions are established for $f(x)$ to be the generating function for the Volterra operator which is inverse to the Cauchy operator: $l[y]=y^{(n)}+p_2(x)y^{(n-2)}+\dots+p_n(x)y$, $y(0)=y'(0)=\dots=y^{(n-1)}(0)=0$ ($n=3,4$), when the coefficients $p_i(x)$ are not analytic.

UDC: 513.88

Received: 05.10.1967


 English version:
Mathematical Notes, 1968, 3:6, 456–459

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025