RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 4, Issue 2, Pages 221–232 (Mi mzm6764)

This article is cited in 7 papers

Exact constants in inequalities between norms of derivatives of functions

V. N. Gabushin

V. A. Steklov Institute of Mathematics, Sverdlovsk Branch of the Academy of Sciences of USSR

Abstract: In this article we shall concern ourselves with determining exact (least possible) constants in the inequalities of the form $\|f^{(k)}\|_{L_q}\le K\|f\|_{L_p}^{\frac{l-k-r^{-1}+q^{-1}}{l-r^{-1}+p^{-1}}}\|f^{(l)}\|_{L_r}^{\frac{k-q^{-1}+p^{-1}}{l-r^{-1}+p^{-1}}}$ for functions defined on the entire $(-\infty,\infty)$, absolutely continuous on any interval together with their $(l-1)$-th derivatives, and having finite
$$ l=2,\quad k=0,\quad k=1,\quad q=r=\infty,\quad 1\leqslant p<\infty $$
is considered.

UDC: 517.5

Received: 07.12.1967


 English version:
Mathematical Notes, 1968, 4:2, 624–630

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025