RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 5, Issue 2, Pages 205–216 (Mi mzm6825)

The absolute convergence of lacunary series

V. F. Emel'yanov

Saratov State University named after N. G. Chernyshevsky

Abstract: A theorem is proved from which it follows that there exists a complete $U$-set $E$ and a number $p$ such that: a) if the $p$-lacunary trigonometric series
$$ \sum_{k=1}^\infty a_k\sin(n_kx+\varepsilon_k), \qquad \varliminf_{k\to\infty}n_{k+1}/n_k>p, $$
converges on $E$, the series of the moduli of its coefficients converges; b) if the sum of the $p$-lacunary trigonometric series is differentiable on $E$, it is continuously differentiable everywhere.

UDC: 517.5

Received: 22.04.1968


 English version:
Mathematical Notes, 1969, 5:2, 125–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024