RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 5, Issue 6, Pages 681–689 (Mi mzm6881)

This article is cited in 3 papers

An inequality for a linear form in the logarithms of algebraic numbers

N. I. Fel'dman

M. V. Lomonosov Moscow State University

Abstract: Let $\ln\alpha_1,\dots,\ln\alpha_{m-1}$ be the logarithms of fixed algebraic numbers which are linearly independent over the field of rational numbers, $b_1,\dots,b_{m-1}$ rational integers, $\delta>0$. A bound from below is deduced for the height of the algebraic number $\alpha_m$ under the condition that
$$ |b_1\ln\alpha_1+\dots+b_{m-1}\ln\alpha_{m-1}-\ln\alpha_m|<\exp\{-\delta H\}, \quad H=\max|b_k|>0. $$


UDC: 511

Received: 04.10.1968


 English version:
Mathematical Notes, 1969, 5:6, 408–412

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025