RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 6, Issue 1, Pages 65–72 (Mi mzm6898)

This article is cited in 4 papers

Self-adjoint abstract differential operators

M. M. Gekhtman

M. V. Lomonosov Moscow State University

Abstract: Let $H$ be an abstract separable Hilbert space. We will consider the Hilbert space $H_1$ whose elements are functions $f(x)$ with domain $H$ and we will also consider the set of self-adjoint operators $Q(x)$ in $H$ of the form $Q(x)=A+B(x)$. In this formula $A\ge E$, $B(x)\ge0$, and the operator $B(x)$ is bounded for all $x$. An operator $L_0$ is defined on the set of finite, infinitely differentiable (in the strong sense) functions $y(x)\inH_1$ according to the formula: $L_0y=-y''+Q(x)y$ $(-\infty<x<\infty)$. It is proved that the closure of the operator $L_0$ is a self-adjoint operator in $H_1$ under the given assumptions.

UDC: 513.88

Received: 07.02.1968


 English version:
Mathematical Notes, 1969, 6:1, 498–502

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025