RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 6, Issue 1, Pages 91–96 (Mi mzm6901)

This article is cited in 2 papers

Ritz method for equations with small parameters for higher derivatives

L. A. Kalyakin

V. A. Steklov Institute of Mathematics, Sverdlovsk Branch of the Academy of Sciences of USSR

Abstract: The problem of convergence of the Ritz method is considered for positive definite operational equations of the form $a_\varepsilon u\equiv(\varepsilon A_1+A_0)u=f$ containing small parameters $\varepsilon$ for the principal part. For specific natural conditions it is proved that the Ritz method, used for an approximate solution to such equations, converges to an exact solution in a metric with quadratic form uniformly with respect to the parameter $\varepsilon$.

UDC: 518

Received: 09.07.1968


 English version:
Mathematical Notes, 1969, 6:1, 513–516

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025