RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 6, Issue 4, Pages 451–462 (Mi mzm6952)

On the order of partial sums of general orthogonal series

R. S. Davtyan

Institute of Mathematics and Mechanics, Academy of Sciences of Armenian SSR

Abstract: It is shown that for convergence of every orthonormal system $\{\varphi_n(s)\}$ given on $[0,1]$, it is necessary and sufficient that, under the condition $\int_0^\infty\frac1{W^2(x)}dx<+\infty$ on tlie increasing function $W(x)$ and for $\sum_{n=1}^\infty a_n^2=+\infty$ there hold $\left|\sum_{k=1}^na_k\varphi_k(x)\right|=o(W(\sum_1^ka_k^2))$ almost everywhere on $[0,1]$.

UDC: 517.5

Received: 13.01.1969


 English version:
Mathematical Notes, 1969, 6:4, 725–732

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025