RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 6, Issue 4, Pages 475–481 (Mi mzm6954)

This article is cited in 11 papers

Best quadrature formulas on classes of differentiable periodic functions

N. E. Lushpai

Dnepropetrovsk State University

Abstract: A solution is given to the problem of finding the best quadrature formula among formulas of the form
$$ \int_0^{2\pi}f(x)\,dx\approx\sum_{k=0}^{m-1}\sum_{l=0}^\rho p_{k,l}f^{(l)}(x_k) $$
which are exact in the case of a constant, for $\rho=r-1$, $r=1,2,3,\dots$ and $\rho=r-2$, $r$ even, for the classes $W^{(r)}L_qM$ of $2\pi$-periodic functions.

UDC: 51

Received: 09.12.1968


 English version:
Mathematical Notes, 1969, 6:4, 740–744

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025