RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 69, Issue 6, Pages 866–875 (Mi mzm700)

This article is cited in 1 paper

The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider the boundary-value problem
$$ u_{tt}+\varepsilon u_t+(1+\varepsilon\alpha\cos 2\tau)\sin u =\varepsilon\sigma^2u_{xx}, \qquad u_x|_{x=0}=u_x|_{x=\pi}=0, $$
, where $0<\varepsilon\ll1$, $\tau=(1+\varepsilon\delta)t$, $\alpha,\sigma>0$, and the sign of $\delta$ is arbitrary. It is proved that for an appropriate choice of the external parameters $\alpha$ and $\delta$ and for sufficiently small $\sigma$ the number of exponentially stable solutions $2\pi$-periodic in $\tau$ can be made equal to an arbitrary predefined number.

UDC: 517.926

Received: 31.01.2000

DOI: 10.4213/mzm700


 English version:
Mathematical Notes, 2001, 69:6, 790–798

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024