RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 9, Issue 4, Pages 415–420 (Mi mzm7024)

Stabilization of solutions of linear differential equations in Hilbert space

A. B. Bakushinskii

M. V. Lomonosov Moscow State University

Abstract: Conditions, less stringent than those known at present, are found for the stabilization of a solution of a linear differential equation of the form $\frac{du}{dt}+A(t)u=f(t)$ in Hilbert space to a solution of the operational equation $Ax=f$, where $A$ is a positive self-adjoint operator. Some regularization algorithms (in A. N. Tikhonov's sense) for this equation are investigated.

UDC: 517.9


 English version:
Mathematical Notes, 1971, 9, 239–242

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024