RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 10, Issue 5, Pages 571–582 (Mi mzm7095)

This article is cited in 8 papers

On the exactness of certain inequalities in approximation theory

V. È. Gheit

Ural State University

Abstract: We prove the following: for every sequence $\{F_\nu\}$, $F_\nu\downarrow0$, $F_\nu>0$ there exists a function $
\begin{array}{l} 1)~E_n(f)\leqslant F_n\quad(n=0,1,2,\dots) \text{ è }\\ 2)~A_kn^{-k}\sum_{\nu=1}^n\nu^{k-1}F_{\nu-1}\leqslant\omega_k(f,n^{-1})\quad(n=1,2,\dots). \end{array}
$

UDC: 517.5

Received: 09.02.1970


 English version:
Mathematical Notes, 1971, 10:5, 768–776

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025