RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 70, Issue 1, Pages 27–37 (Mi mzm715)

This article is cited in 1 paper

On Some Automorphisms of Orthogonal Groups in Odd Characteristic

V. M. Galkin, N. V. Mokhnina

Nizhny Novgorod State Technical University

Abstract: In this paper, it is proved that the simple orthogonal groups $O_{2n+1}(q)$ and $O_{2n}^\pm (q)$ (where $q$ is odd) cannot be automorphism groups of finite left distributive quasigroups. This is a particular case of the conjecture stating that the automorphism group of a left distributive quasigroup is solvable. To complete the proof of the conjecture, one must test all finite groups.

UDC: 512.54

Received: 14.03.2000

DOI: 10.4213/mzm715


 English version:
Mathematical Notes, 2001, 70:1, 25–34

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024