RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 14, Issue 1, Pages 101–106 (Mi mzm7209)

Banach spaces in which a theorem of Orlicz is not true

S. A. Rakov

Kharkiv State University

Abstract: Let the Banach space $X$ be such that for every numerical sequencet $l_n\searrow0$ there exists in $X$ an unconditionally convergent series $\Sigma x_n$, the terms of which are subject to the condition $\|x_n\|=t_n$ ($n=1,2,\dots$). Then
$$\sup_n\inf_{X_n}d(X_n,l_\infty^{(n)})<\infty,$$
where $X_n$ ranges over all the $n$-dimensional subspaces of $X$.

UDC: 513.88

Received: 07.02.1972


 English version:
Mathematical Notes, 1973, 14:1, 613–616

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025