RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 14, Issue 2, Pages 161–172 (Mi mzm7245)

This article is cited in 5 papers

Convergence in the mean of the Fourier series in orthogonal polynomials

V. M. Badkov

Institute of Mathematics and Mechanics, Academy of Sciences of the USSR

Abstract: For weights $p(t)$ and $q(t)$ with a finite number of power-law-type singularities we obtain necessary and sufficient conditions for the inequality
$$\|s_n^{(p)}(f)q\|_{L^\eta(-1,1)}\le C\|fq\|_{L^\eta(-1,1)},$$
to hold, where $s_n^{(p)}(f)$ is a partial sum of the Fourier series of the function $f$ in terms of polynomials orthogonal on $[-1,1]$ with weight $p(t)$. This inequality is used to solve the problem concerning convergence in the mean and also convergence almost everywhere of the partial sum $s_n^{(p)}(f)$.

UDC: 517.5

Received: 15.07.1971


 English version:
Mathematical Notes, 1973, 14:2, 651–657

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025