RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 1, Pages 33–43 (Mi mzm7316)

The approximation of a Hölder class of two variables by Riesz spherical means

B. I. Golubov

Moscow Institute of Physics and Technology

Abstract: For periodic functions of the Hölder class $H_2^\alpha$ ($0<\alpha\le1$) defined in the two-dimensional space $E_2$, we find the asymptotic form as $R\to+\infty$ of the quantity
$$\sup_{f\in H_2^\alpha}\|S_r^\delta(x,f)-f(x)\|_{C(E_2)}\left(\delta>\frac12+\alpha\right),$$
where $S_R^\delta(x,f)$ is the Riesz spherical mean of order $\delta$ of the Fourier series of the function $f(x)$.

UDC: 517.8

Received: 08.01.1973


 English version:
Mathematical Notes, 1974, 15:1, 20–25

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025