RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 2, Pages 205–212 (Mi mzm7337)

This article is cited in 28 papers

A boundary uniqueness theorem for holomorphic functions of several complex variables

S. I. Pinchuk

M. V. Lomonosov Moscow State University

Abstract: If $D\subset C^n$ is a region with a smooth boundary and $M\subset\partial D$ is a smooth manifold such that for some point $p\in M$ the complex linear hull of the tangent plane $T_p(M)$ coincides with $C^n$, then for each function $f\in A(D)$ the condition $f\mid_m=0$ implies that $f\equiv0$ in $D$.

UDC: 517.5

Received: 30.05.1973


 English version:
Mathematical Notes, 1974, 15:2, 116–120

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024