RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 3, Pages 467–477 (Mi mzm7368)

This article is cited in 13 papers

Peano's theorem in an infinite-dimensional Hilbert space is false even in a weakened formulation

A. N. Godunov

M. V. Lomonosov Moscow State University

Abstract: We formulate a continuous function $F\colon R\times H\to H$, where $H$ is a separable Hilbert space such that the Cauchy problem
$$ x'(t)=F(t,x(t)),\quad x(t_0)=x_0 $$
has no solution in any neighborhood of the point $t_0$, no matter what $t_0\in R$ and $x_0\in H$ are considered.

UDC: 513.88

Received: 13.04.1973


 English version:
Mathematical Notes, 1974, 15:3, 273–279

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025