RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 5, Pages 757–763 (Mi mzm7403)

On a problem in the theory of rings of principal ideals

A. A. Nechaev


Abstract: We give a negative answer to a question posed by A. V. Jategaonkar: is it not true that an arbitrary primary principal left ideal ring is a factor of a prime principal left ideal ring? We give a counter example in the class of finite complete primary principal ideal rings, the so-called Galois–Eisenstein–Ore rings.

UDC: 512

Received: 09.10.1973


 English version:
Mathematical Notes, 1974, 15:5, 453–457

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025