RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 6, Pages 835–838 (Mi mzm7412)

This article is cited in 2 papers

On sufficient conditions for the convergence of double series over rectangles

M. Bakhbukh

M. V. Lomonosov Moscow State University

Abstract: We prove convergence almost everywhere on $[0,2\pi]\times[0,2\pi]$ of the double Fourier series of functions $f(x,y)$ with modulus of continuity
$$ \omega(f,\delta)=O\biggl(\frac1{\bigl(\ln\frac1\delta\bigr)^{1+\varepsilon}}\biggr) $$
for $\varepsilon>0$.

UDC: 517.5

Received: 27.11.1972


 English version:
Mathematical Notes, 1974, 15:6, 501–503

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025