RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 6, Pages 891–895 (Mi mzm7420)

On local uniqueness of the solution of boundary-value problems

V. D. Ponomarev

Latvian State University Computing Center

Abstract: In this paper we present conditions under which differentiability of the mappings $F:AC^n(I)\to L^n(I)$ and $\Phi:AC^n(I)\to R^n$ at $x_0\in AC^n(I)$ and the uniqueness of the solution of the boundaryvalue problem $u'=F'(x_0)(u)$, $\Phi'(x_0)(u)=0$ imply local uniqueness of the solution $x_0$ of the boundary-value problem $x'=F(x)$, $\Phi(x)=0$.

UDC: 517.9

Received: 24.07.1972


 English version:
Mathematical Notes, 1974, 15:6, 533–535

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025