RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 1, Pages 135–140 (Mi mzm7444)

This article is cited in 1 paper

Radicals of Jordan rings connected with alternative rings

A. M. Slin'ko

Institute of Mathematics, Siberian Branch of USSR Academy of Sciences

Abstract: Subject to a certain restriction on the additive group of an alternative ring $A$, we prove that $R(A)=R(A^{(+)})$, where $A^{(+)}$ is a Jordan ring and $R$ is one of the following radicals: the Jacobson radical, the upper nil-radical, the locally nilpotent radical, or the lower nil-radical. For the proof of these relationships Herstein's well-known construction for associative rings is generalized to alternative rings.

UDC: 519.4

Received: 05.03.1973


 English version:
Mathematical Notes, 1974, 16:1, 664–667

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025