RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 2, Pages 193–204 (Mi mzm7450)

This article is cited in 1 paper

Best quadrature formula on the class $W_*^rL_2$

N. E. Lushpai

Dnepropetrovsk State University

Abstract: For the classes of periodic functions with $r$-th derivative integrable in the mean,we obtain a best quadrature formula of the form
\begin{gather*} \int_0^1f(x)\,dx=\sum_{k=0}^{m-1}\sum_{l=0}^{\rho}p_{k,l}f^{(l)}(x_k)+R(f),\quad0\le\rho\le r-1, \\ 0\le x_0<x_1<\dots<x_m-1\le1, \end{gather*}
where $\rho=r-2$ and $r-3$, $r=3,5,7,\dots$, and we determine an exact bound for the error of this formula.

UDC: 517.5

Received: 31.07.1972


 English version:
Mathematical Notes, 1974, 16:2, 701–708

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025