RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 2, Pages 285–295 (Mi mzm7461)

This article is cited in 12 papers

The product of two groups, one of which contains a cyclic subgroup of index $\le2$

V. S. Monakhov

Institute of Mathematics, Academy of Sciences Byelorussian SSR

Abstract: We prove that a finite group $G=A\cdot B$ is solvable if the groups $A$ and $B$ contain cyclic subgroups with indices $\le2$. We provide a description of two classes of nonsolvable factorizable groups.

UDC: 519.4

Received: 10.09.1973


 English version:
Mathematical Notes, 1974, 16:2, 757–762

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024