RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 6, Pages 887–897 (Mi mzm7530)

Limits of indeterminacy of sequences obtained from a given sequence using a regular transformation

N. N. Kholshchevnikova

V. A. Steklov Mathematical Institute, USSR Academy of Sciences

Abstract: The problem considered is how there can be a set of weak accumulation points of the subsequences of a sequence obtained from a given sequence by using a regular transformation of the class $T(C,C')$ when the terms of the sequences are elements of a reflexive Banach space. $T(C,C')$ denotes the class of complex regular matrices $c_{mn}$ ($c_{mn}=a_{mn}+ib_{mn}$, where $a_{mn}$ and $a_{mn}$ are real numbers) satisfying the conditions $\varlimsup\limits_{m\to\infty}\sum_{n=0}^\infty|a_{mn}|=C$ è $\varlimsup\limits_{m\to\infty}\sum_{n=0}^\infty|b_{mn}|=C'$

UDC: 517.5

Received: 02.07.1974


 English version:
Mathematical Notes, 1974, 16:6, 1126–1132

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025