RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 6, Pages 933–942 (Mi mzm7535)

This article is cited in 1 paper

Annihilator conditions in endomorphism rings of modules

G. M. Brodskii

Yaroslavl State University

Abstract: The concepts of an intrinsically projective module and an intrinsically injective module are introduced and their connection with the presence of annihilator conditions in the endomorphism ring of a module is explained. It is shown that a ring $R$ is quasi-Frobenius if and only if in the endomorphism ring of any fully projective (or any fully injective) $R$-module it is true that $r(l(I))=I$ and $l(r(J))=J$ for all finitely generated right ideals $I$ and finitely generated left ideals $J$.

UDC: 519.4

Received: 18.02.1974


 English version:
Mathematical Notes, 1974, 16:6, 1153–1158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025