RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 4, Pages 531–543 (Mi mzm7572)

This article is cited in 5 papers

Diameters of some classes of differentiable periodic functions in the space $L$

V. P. Motornyi, V. I. Ruban

Dnepropetrovsk State University

Abstract: In this paper, diameters in the sense of A. N. Kolmogorov are found for the class of $2\pi$-periodic functions $W^{(r)}H_\omega$ in the space $L$, that is, $d_{2n-1}(W^{(r)}H_\omega, L)$, where $\omega(t)$ is an upper-convex regular modulus of continuity ($r,n=1,2,\dots$). An estimate from below is found for diameters in the sense of I. M. Gel'fand, that is, $d^{2n-1}(W^{(r)}H_\omega, L)$

UDC: 517.5

Received: 28.11.1973


 English version:
Mathematical Notes, 1974, 17:4, 313–320

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024