RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 4, Pages 563–569 (Mi mzm7575)

On some properties of schlicht functions

P. I. Sizhuk, V. V. Chernikov

Tomsk Scientific-Research Institute of Automation and Electronics

Abstract: One considers the classes $S_\beta^*(\alpha)$, $S_\beta(\gamma)$ and $S$ of functions $f(z)=z+\dots$, which are respectively $\alpha$-starlike of orderbeta, $\gamma$-spirallike of order $\beta$, and regular schlicht in $|z|<1$. It is proved that for $\alpha\ge0$, $0<\beta<1$ from $f(z)\in S^*_\beta(\alpha)$ follows $f(z)\in S_\beta^*(0)$; this generalizes appropriate results of [1–5]. A converse result is also obtained. For certain $\alpha$ and $\beta$ the exact value of the radius of $\alpha$-starlikeness of orderbeta for the class $S$ is given. An equation is found, whose unique root gives the radius $\gamma$-spirallikeness of order $\beta$ for the class $S$.

UDC: 517

Received: 25.02.1974


 English version:
Mathematical Notes, 1975, 17:4, 321–326

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024