RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 4, Pages 611–624 (Mi mzm7580)

This article is cited in 19 papers

The inverse scattering problem of quantum theory

B. M. Levitan

M. V. Lomonosov Moscow State University

Abstract: The inverse phase-type scattering problem for the boundary-value problem
\begin{gather} -y''+q(x)y=k^2y\quad(0\le x<\infty),\\ y'(0)=hy(0). \end{gather}
is studied.
It is shown that, for each function $\delta(k)$ satisfying the hypotheses of Levinson's theorem, there exists a problem (1)–(2) with $h\ne\infty$ and another problem (1)–(2) with $h=\infty$ (i.e., with the boundary condition $y(0)=0$).
The solvability condition for the Riemann-Hilbert problem is used more directly than has been done heretofore by others in deriving boundary condition (2).

UDC: 517

Received: 01.11.1974


 English version:
Mathematical Notes, 1975, 17:4, 363–371

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024