RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 6, Pages 873–885 (Mi mzm7607)

Free $f$-modules

A. V. Mikhalev, M. A. Shatalova

M. V. Lomonosov Moscow State University

Abstract: Let $R$ be a directed ring whose cone of positive elements is strict and satisfies Ore's condition. The main result: there exists a freef-module over an $o$-module $_RM$ with cone $P_M$ if and only if $P_M$ is half-closed (this generalizes Vainberg's theorem for ordered Abelian groups). In this connection various characterizations off-modules with strict cones are given.

UDC: 512

Received: 17.07.1974


 English version:
Mathematical Notes, 1975, 17:6, 526–532

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025