RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 70, Issue 4, Pages 483–490 (Mi mzm761)

This article is cited in 2 papers

On the Dimension of Nilpotent Algebras

B. Amberga, L. S. Kazarinb

a Johannes Gutenberg Universität Mainz
b Yaroslavl State Technical University

Abstract: The Eggert conjecture claims that a finite commutative algebra $R$ over a field of prime characteristic $p$ has the property $\dim R\ge p\dim R^{(1)}$, where $R^{(1)}$ is the subspace of $R$ spanned by the $p$th powers of elements of $R$. We obtain results related to this conjecture and results on nilpotent algebras of rather high nilpotency class.

UDC: 512.54

Received: 28.11.2000

DOI: 10.4213/mzm761


 English version:
Mathematical Notes, 2001, 70:4, 439–446

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025