RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 1, Pages 9–17 (Mi mzm7619)

This article is cited in 4 papers

Equiconvergence and equisummability of nonharmonic Fourier expansions with ordinary trigonometric series

A. M. Sedletskii

Moscow Power Engineering Institute

Abstract: Given $f\in L(-\pi,\pi)$, we consider its nonharmonic Fourier series $f(x)\sim\sum c_ne^{i\lambda}n^x$, where $\lambda_n$ are the roots of the entire function $L(z)=\int_{-\pi}^\pi e^{izt}\,d\sigma(T)$. We show that this series is equiconvergent, uniformly inside $(-\pi,\pi)$, and equisummable with the Fourier series of $f$ with respect to the trigonometric system if $\sigma'(t)=k(t)(\pi-|t|)^{-\alpha}$, $\alpha\in(0,1)$, $\operatorname{var}k<\infty$, $k(\pi-0)\ne0$, $k(-\pi+0)\ne0$.

UDC: 51?

Received: 29.05.1974


 English version:
Mathematical Notes, 1975, 18:1, 586–591

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024