RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 2, Pages 267–277 (Mi mzm7650)

This article is cited in 5 papers

Formulas for functions of ordered operators

M. V. Karasev

Moscow Institute of Electronic Engineering

Abstract: In an algebra with a lattice of functions of ordered elements (e.g., in an algebra of operators), we investigate the expansions of functions of the type $f(A+B)$ and $\varphi(\stackrel1A,\stackrel2B)$ in powers of the commutators $A$, $B$. In particular, we obtain all the terms of the expansion
$$ f(A+B)=f(\stackrel1A+\stackrel2B)+\frac12\stackrel2{\overline{[A,B]}}f^{(2)}(\stackrel1A+\stackrel3B)+\dots $$
A diagram method for a similar type of calculation is developed. Our discussion is based on Maslov's technique of ordered operators.

UDC: 513.88

Received: 26.04.1974


 English version:
Mathematical Notes, 1975, 18:2, 746–752

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025