RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 1, Pages 19–28 (Mi mzm7719)

Extremal problems in a subclass of entire functions of finite power

S. A. Kas'yanyuk


Abstract: We study the subclass $W_\sigma(A)$ of the class of entire transcendental functions $f(z)$of exponential type with index not greater than sgr satisfying the condition
$$ \int_{-\infty}^\infty|f(x)|^2\,dx\le A^2 $$
We find the set of values of the quantities $f(z)$, $f'(z)$, etc. when $z$ is fixed and $f(z)$ runs through the subclass $W_\sigma(A)$. We study extremal values of functionals of the type $\Phi(f(z),f'(z))$. In particular, we obtain upper bounds on the quantities $|f(z+\beta/2)\pm f(z-\beta/2)|$ è $|af'(z)+b\sigma f(z)|$.

UDC: 517.5

Received: 06.11.1974


 English version:
Mathematical Notes, 1976, 19:1, 11–16

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024