RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 3, Pages 313–322 (Mi mzm7750)

This article is cited in 11 papers

Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions

V. F. Babenko

Dnepropetrovsk State University

Abstract: For certain classes of functions (all functions are defined on a Jordan measurable set $G$) defined by a majorant on the modulus of continuity, we find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form
$$ \int_Gf(x)\,dx\approx\sum_{\nu=1}^mc_\nu f(x^\nu) $$
When the given majorant of the modulus of continuity is $t^\alpha$ and the nonnegative function $P(x)$ is such that for any nonnegative numbera the set $\{x\in G:P(x)\le a\}$ is Jordan measurable, then we also find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form
$$ \int_GP(x)f(x)\,dx\approx\sum_{\nu=1}^mc_\nu f(x^\nu) $$


UDC: 517.5

Received: 11.12.1974


 English version:
Mathematical Notes, 1976, 19:3, 187–193

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024