RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 3, Pages 347–352 (Mi mzm7753)

This article is cited in 2 papers

Chebyshev subspaces of vector-valued functions

È. N. Morozov

Kalinin Polytechnic Institute

Abstract: It is shown that if on a compact space $Q$ any polynomial $P_N(z)=\sum_1^Na_i\begin{pmatrix}f_{i1}\\\vdots\\f_{is}\end{pmatrix}$, $\sum_1^N|a_i|^2>0$, in a system of continuous vector functions with real coefficients such that $N=n\cdot s$ and $s=2p+1$ has at most $n-1$ zeros, then $Q$ is homeomorphic to a circle or a part of one.

UDC: 517.5

Received: 23.12.1974


 English version:
Mathematical Notes, 1976, 19:3, 209–212

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024