RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 3, Pages 435–448 (Mi mzm7762)

Absolute convergence of Fourier series in eigenfunctions of an elliptic operator

V. S. Serov

M. V. Lomonosov Moscow State University

Abstract: In this article we investigate absolute convergence of Fourier series in eigenfunctions of an $m$-th order elliptic operator on functions in the Besov class $B_{2,\theta}^{N/2}$. We show that in terms of Besov classes the theorem of Peetre on absolute convergence of series in eigenfunctions in the class $B_{2,1}^{N/2}$ is best possible. We construct a function in $B_{2,\theta}^{N/2}$ whose Fourier series is absolutely divergent at any preassigned point.

UDC: 517.4

Received: 20.02.1975


 English version:
Mathematical Notes, 1976, 19:3, 266–274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025