RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 5, Pages 707–716 (Mi mzm7791)

The kernel of a sequence obtained from a given sequence with the aid of a regular transformation

A. A. Shcherbakov

Ural State University

Abstract: The smallest set is found that contains the kernel of a sequence obtained from a sequence of elements $\{x_n\}$ of a Banach space with the aid of a regular transformation of the class $T(C,C')$. Here $T(C,C')$ is the set of complex matrices $(c_{nk}\equiv(a_{nk}+ib_{nk})$ satisfying the conditions $\varlimsup\limits_{n\to\infty}\sum_{k=1}^\infty|a_{nk}|=C\ge1$, $\varlimsup\limits_{n\to\infty}\sum_{k=1}^\infty|b_{nk}|=C'\ge0$.

UDC: 517

Received: 14.06.1975


 English version:
Mathematical Notes, 1976, 19:5, 424–429

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024