RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 6, Pages 899–911 (Mi mzm7812)

This article is cited in 11 papers

Estimates of $n$-diameters of some classes of functions analytic on Riemann surfaces

V. P. Zakharyuta, N. I. Skiba

Rostov State University

Abstract: This study concerns the class $A_K^D$ of functions $x$ analytic in a domain $D$ of an open Riemann surface and satisfying there the inequality $|x|<1$ with metric defined by the norm of the space $C(K)$ of functions continuous on the compact subset $K\subset D$. The asymptotic formula
$$ \lim_{n\to\infty}[d_n(A_K^D)]^{1/n}=e^{-1/\tau}, $$
is established, where $D$ is a finitely connected domain of Carathéodory type, $K\subset D$ is a regular compact subset such thatdsetmnk is connected, and $\tau=\tau(D,K)$ is the flux of harmonic measure of the set $\partial D$ relative to the $D\setminus K$ through any rectifiable contour separating $\partial D$ and $K$.

UDC: 517.5

Received: 12.02.1975


 English version:
Mathematical Notes, 1976, 19:6, 525–532

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024