RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 3, Pages 351–358 (Mi mzm7853)

This article is cited in 3 papers

The spectrum of an elliptic operator of second order

T. M. Kerimov, V. A. Kondrat'ev

Azerbaijan State Economic University

Abstract: Under minimal requirements on the coefficients and the boundary of the domain it is proved that the spectrum of the first boundary-value problem for an elliptic operator of second order always lies in the half-plane $\lambda'\le\operatorname{Re}\lambda$, where $\lambda'$ is the leading eigenvalue to which there corresponds a nonnegative eigenfunction. On the line $\operatorname{Re}\lambda=\lambda'$, there are no other points of the spectrum.

UDC: 517.9

Received: 14.05.1975


 English version:
DOI: 10.1007/BF01097244

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024