RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 4, Pages 489–500 (Mi mzm7869)

This article is cited in 12 papers

Upper bounds of topologies

E. G. Pytkeev

Institute of Mathematics and Mechanics, Ural Scientific Center of the AS of USSR

Abstract: The topology of a space $(X,\tau)$ homeomorphic to a non-$\sigma$-compact separable Borel set is equal to the upper bound of two topologies of the Hilbert cube. In particular, $(X,\tau)$ condenses to a compact space. The topology of a complete zero-dimensional metric space is the upper bound of two compact topologies. In particular, it dominates a compact Hausdorff topology.

UDC: 513.8

Received: 29.12.1975


 English version:
Mathematical Notes, 1976, 20:4, 831–837

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025