RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 4, Pages 501–510 (Mi mzm7870)

This article is cited in 1 paper

Lorentz sequence spaces

S. A. Rakov

Kharkiv Civil Engineering Institute

Abstract: It is shown that the condition
$$ \sup\limits_n\Bigl\{n^{1/2}\Bigl(\sum_{j\le n}c_j^2\Bigr)^{1/2}\Bigr/\sum_{j\le n}c_j\Bigr\}<\infty $$
on the normalizing sequence $\{c_j\}_{j<\infty}$ of the Lorentz sequence space $\Lambda(c)$ is a necessary and sufficient condition for having each bounded linear operator acting from an arbitrary $\mathscr L_\infty$-space into $\Lambda(c)$ be 2-absolutely summing.

UDC: 513.8

Received: 08.12.1974


 English version:
Mathematical Notes, 1976, 20:4, 837–842

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025