RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 1, Pages 65–70 (Mi mzm7930)

Asymptotic formulas for the enumerator of trees with a given number of hanging or internal vertices

V. A. Voblyi

State Scientific-Research and Design Institute for the Varnish and Paint Industry

Abstract: Let $t(r,n)$ be the number of trees with $n$ vertices of which $r$ are hanging and $q$ are internal ($r=n-q$). For a fixed $r$ or $q$ we prove the validity of the asymptotic formulas ($r>2$)
\begin{gather*} t(r,n)\approx\frac1{r!(r-2)!}2^{2-r}n^{2r-4}\quad(n\to\infty), \\ t(n-q,n)\approx\frac1{q!(q-1)!}q^{q-2}n^{q-1}\quad(n\to\infty). \end{gather*}
In the derivation of these formulas we do not use the expression for the enumerator of the trees with respect to the number of hanging vertices.

UDC: 519.1

Received: 16.10.1975


 English version:
Mathematical Notes, 1977, 21:1, 36–39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025