RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 1, Pages 99–108 (Mi mzm7934)

On exact endomorphisms with a quasi-invariant measure

V. G. Sharapov

Tashkent State University

Abstract: In this paper it is proved that for any measurable partition $\xi$, $\xi\ne\varepsilon\pmod0$, of Lebesgue space with continuous measure that does not have elements of positive measure, there exists an exact endomorphism $T$ with a quasi-invariant measure for which $T^{-1}\varepsilon=\xi$.

UDC: 519.9

Received: 10.01.1975


 English version:
Mathematical Notes, 1977, 21:1, 54–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025