RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 1, Pages 125–132 (Mi mzm7937)

This article is cited in 1 paper

Movability relative to various classes of spaces

S. A. Bogatyi, V. A. Kalinin

M. V. Lomonosov Moscow State University

Abstract: This article is in answer to a question posed by K. Borsuk [1]. There exists a locally connected continuum $X$ which is movable relative to the class of all spheres, but which is not 2-movable. We shall prove that the classes $\EuScript K$ of movable compacta coincide for the following $\EuScript K$: 1) all polyhedra of dimension $\le n$, 2) all compacta of dimension $\le n$, and 3) gall compacta of fundamental dimension $\le n$. We shall also prove that the movability of a compactum $X$ is equivalent to its movability relative to the class of all polyhedra.

UDC: 513

Received: 28.07.1975


 English version:
Mathematical Notes, 1977, 21:1, 68–71

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025